
INTRODUCTION (CH. 1 & 3.1 – 3.2) 
 

Units 

The seven fundamental units of the SI system are defined in the lecture notes below. For more 
information, refer to Appendix A in your textbook. 

 

Equations 

(3.1) sin 𝜃 =
𝑜𝑝𝑝

ℎ𝑦𝑝
=

𝑎

𝑐
;  cos 𝜃 =

𝑎𝑑𝑗

ℎ𝑦𝑝
=

𝑏

𝑐
;  tan 𝜃 =

𝑜𝑝𝑝

𝑎𝑑𝑗
=

𝑎

𝑏
  

trigonometric functions: sine (opposite / hypotenuse), cosine 
(adjacent / hypotenuse), and tangent (opposite / adjacent) 

(3.2) 𝜃 = sin−1 (
𝑜𝑝𝑝

ℎ𝑦𝑝
) = cos−1 (

𝑎𝑑𝑗

ℎ𝑦𝑝
) = tan−1 (

𝑜𝑝𝑝

𝑎𝑑𝑗
) 

  inverse trigonometric functions used to find the angle 

(3.3) 𝑎2 + 𝑏2 = 𝑐2 Pythagorean theorem; used to find the missing side of right 
triangle, or the missing component of a vector 

(3.4) 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ general position vector (𝒓⃗⃗) in a 2D coordinate system, where  
𝑖̂ and 𝑗̂ are unit vectors, and 𝑥 and 𝑦 are scalars 

(3.6) 𝑟1 + 𝑟2 = (𝑥1 + 𝑥2)𝑖̂ + (𝑦1 + 𝑦2)𝑗 ̂ vector sum (addition) 

(3.7) 𝑟2 − 𝑟1 = (𝑥2 − 𝑥1)𝑖̂ + (𝑦2 − 𝑦1)𝑗 ̂ vector difference (subtraction) 

(3.8) 𝑟 = √𝑥2 + 𝑦2, 𝜃 = tan−1 (
𝑦

𝑥
) vector magnitude and direction, given vector components 

(3.9) 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 vector components, given magnitude and direction 

(3.10) 𝑎𝑟 = 𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ multiplication of a vector by a scalar 

 

 

 

What is Physics? (Introduction) 

• Physics answers the question of how things work, from the very small to the very large. In this 
class, we will focus on mechanics, a branch of physics that is concerned primarily with the 
motion of objects and the forces that affect that motion. 

Measurements in Physics (1.1 – 1.4) 

• If we are to describe anything in physics, we must be able to measure it in some way. Math is 
the language of physics, allowing us to quantify the properties of objects and interactions 
around us, and enabling us to make connections between different these objects and 
interactions. For this class, a basic understanding of algebra and/or pre-calculus is required. We 
will review the necessary concepts in the first few lectures, expanding when necessary to 
complete problems in later chapters. 



• Without a common reference point, no one would be able to agree on a given measurement, 
which could lead to all kinds of problems. The Système Internationale of measurements (or SI 
system) was developed to define common units for each of the fundamental quantities of 
nature based on rationale (uses powers of 10 for conversions, which makes sense, since we 
count using our 10 fingers) and universality (instruments and the quantities they measure can 
be calibrated by measuring universal phenomena). The seven fundamental units of nature and 
their abbreviations are listed here (for more information, see Appendix B in your textbook): 

o The fundamental unit of length (or distance) is the meter (m). 

o The fundamental unit of mass is the kilogram (kg). Note that the kilogram is the only 
unit that has an SI prefix in front of it (kilo); gram is the base unit. 

o The fundamental unit of time is the second (s). 

o The fundamental unit of electric current is the ampere (A). 

o The fundamental unit of temperature is the kelvin (K). 

o The fundamental unit of an amount of substance is the mole (mol). 

o The fundamental unit of luminous intensity is the candela (cd). 

• Other units are defined by combining the fundamental units in different ways. For example, the 

unit of momentum is 
kg∙m

s
. Some units are used so much that they have their own special 

names. For example, the unit of force is the Newton (N), which is equal to 
kg∙m

s2 . 

• When measurements become very small or very large, they can become difficult to write. 
Scientific notation is most helpful when describing numbers that are much larger or much 
smaller than the standard units of measurements, such as the mass of a planet or an atom. 
Another way to express larger and smaller values is to use SI prefixes, which change the 
magnitude of a number by some power of 10. To do this by hand, just move the decimal place 
to the right (for larger numbers) or to the left (for smaller numbers) by the correct number of 
spaces. Normal, everyday human experiences tend to fall in the middle of the range, where 
scientific notation isn’t necessary, as long as you’re using the right prefix. For a list of SI prefixes, 
see Appendix B in your textbook. For a better perspective of the scale (or size) of things, see the 
video on Blackboard called “Scales of the Universe”. 

• Other common measurement systems include the cgs system (short for centimeter-gram-
second) and the English system (primarily only used in the US for non-scientific measurements). 
Units in one system can be converted to units in another that measure the same kind of thing 
(for example, a distance measured in feet can be converted into meters but not kilograms). For 
a list of common unit conversions, see Appendix C in your textbook. 

• Dimensional analysis and order-of-magnitude estimates can often be used to either start a 
problem or check your work. Sometimes, just knowing the proper units for your answer can help 
you to decide which variables need to be combined, and in which order (dimensional analysis). It 
is also a good idea to always ask if your answer makes sense. If an answer seems way too big or 
small, you may have missed a unit conversion or used the wrong approach entirely (order-of-
magnitude estimates). 

  



• The accuracy of a measurement tells you how close you are to the real-world answer (either the 
true or accepted value). If you think of a target, good accuracy would mean hitting close to the 
bullseye. Many scientific instruments use a calibration standard to adjust for a loss of accuracy 
over time. Precision, on the other hand, refers to the repeatability of a measurement. Thinking 
of the target again, good precision would mean hitting in the same spot multiple times, 
regardless of how close you are to the bullseye.  

• Significant figures are used to record a measurement within the precision of a given 
measurement. All digits in a number, except for zero, contribute to the number of significant 
figures. Zeros can only be counted as significant if they appear between two non-zero numbers, 
or after another number and after the decimal place. For example, the number 0.003 has only 1 
significant figure, 0.0030 has 2 significant figures, 3.00 has 3 significant figures, and 303 has 3 
significant figures. Zeros before the decimal place only count if the decimal place is included in 
the number. For example, the number 2700. has 4 significant figures, but the number 2700 only 
has 2. If it is unclear how many significant figures a number has, the number should be written 
using scientific notation or SI prefixes. Significant figures should be including when making 
calculations using the following rules: 

o For multiplication and division, the answer should have the same number of significant 
figures as the number with the least significant figures. 

o For addition and subtraction, the answer should have the same number of decimal 
places as the number with the least number of significant decimal places. 

o Numbers or constants with exact values do not contribute to the significant figures. 

o Wait to round answers until all steps have been calculated. Keep as many significant 
figures or decimal places as possible until the end to avoid rounding error. 

 

Trigonometry Review (3.1) 

• In this class, we will be describing the motion of objects in two dimensions (2D). Before starting 
a problem or taking any measurements, we must agree on a reference point. Physicists 
commonly use a Cartesian coordinate system, which consists of two perpendicular axes (for 2D 
motion), x and y, that intersect at the origin. It is important to note that the origin and 
orientation of a coordinate system is arbitrary. Sometimes, creative placement and orientation 
of your coordinate system will make a problem easier to solve. 

• Many of the problems that we will do in this class require the use of algebra and trigonometry. 
Some of the more common trigonometric functions are summarized in Equations 3.1 – 3.2, 
along with the Pythagorean theorem (Eq. 3.3). These functions are based on the relationships 
among the sides of a right triangle, and their associated angles. It is also important to note that 
the values of the trig functions change if you change angles. For a list of trig functions and their 
values for common angles, see Appendix A in your textbook. Table 3.1 on pg. 42 also gives 
decimal values to three significant figures. 

  



Scalars & Vectors (3.2) 

• A scalar can be thought of as a single number that can be used to quantify something; it may or 
may not have units associated with it. A vector, on the other hand, consists of 2 or more 
numbers, or scalars, and is often described graphically using arrows. 

• The first physical quantity that we will talk about is position. A position vector (𝒓⃗⃗) gives the 
location of an object in any coordinate system, with the tail of the vector at the origin, and the 
head of the vector at the location of the object. The arrow above the variable tells you that it is 
a vector and not a scalar. The components of the position vector gives the x- and y-coordinates 
of its location, such as 

𝑟 = 〈200 m, 100 m〉   or   𝑟 = 〈200, 100〉 m 

These individual components are in turn scalars. 

• In physics, vectors are often written out using unit vector notation, such as  

𝑟 = 200 m 𝑖̂ + 100 m 𝑗̂   or   𝑟 = (200 𝑖̂ + 100 𝑗̂) m 

In this notation, 𝑖̂ and 𝑗̂ refer to the positive x- and y-directions, respectively. The general 
position vector (in 2D) is given in Equation 3.4. 

• When adding or subtracting vectors, we can use the unit vector notation to add or subtract just 
like we would with algebra. Just like with scalar math, both vectors and the answer (which is 
also a vector) have the same units. Note: with subtraction, make sure to keep the same order. 

If   𝑟1 = 𝑥1 𝑖̂ + 𝑦1 𝑗 ̂

And   𝑟2 = 𝑥2 𝑖̂ + 𝑦2 𝑗 ̂

Then            𝑟3 = 𝑟1 + 𝑟2 = (𝑥1 + 𝑥2) 𝑖̂ + (𝑦1 + 𝑦2) 𝑗 ̂  (Eq. 3.6) 

And            𝑟4 = 𝑟2 − 𝑟1 = (𝑥2 − 𝑥1) 𝑖̂ + (𝑦2 + 𝑦1) 𝑗 ̂  (Eq. 3.7) 

• Graphically, you can add two vectors by placing the tail of 𝑟2 at the head of 𝑟1. It is important to 
note that the direction of each vector be exactly the same as before. For example, the vector 𝑟3 
will be the vector from the tail of 𝑟1 to the head of 𝑟2. For subtraction, you place the tails of both 
vectors together, and the answer, 𝑟4, will be the vector from the head of 𝑟1 to the head of 𝑟2. 

• You can also multiply a vector by a scalar (Eq. 3.10). In this case, every component of the vector 
gets multiplied by the same scalar. Multiplying by a scalar changes the magnitude of the vector, 
but not its direction. 

• Instead of using the x and y components to describe a vector, you could also use its magnitude 
and direction angle. The magnitude is another way of interpreting the physical length of the 
vector (a scalar) and is found using the Pythagorean theorem (Eq. 3.3), where the x and y 
components give the sides of the triangle, and the magnitude is the hypotenuse. 

𝑎2 + 𝑏2 = 𝑐2   becomes   𝑦2 + 𝑥2 = 𝑟2 

which gives   𝑟 = √𝑥2 + 𝑦2 

  



The direction can then be described as the angle between the +x axis (or the unit vector 𝑖̂) and 
the vector itself. This angle can be found by using the inverse tangent function (Eq. 3.2), where x 
is the adjacent side and y is the opposite side. 

𝜃 = tan−1 (
𝑜𝑝𝑝

𝑎𝑑𝑗
) = tan−1 (

𝑦

𝑥
) 

Conversely, you can use a vector’s magnitude, direction angle and the corresponding trig 
functions to find its components (Eq. 3.9). 

Start with     cos 𝜃 =
𝑎𝑑𝑗

ℎ𝑦𝑝
 and sin 𝜃 =

𝑜𝑝𝑝

ℎ𝑦𝑝
 

Replace adj, opp, and hyp with x, y, and r cos 𝜃 =
𝑥

𝑟
 and sin 𝜃 =

𝑦

𝑟
 

Multiply both sides by the magnitude to get 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 


